
Array signal processing optimization in GNU Radio

for tracking and receiving applications

E. Bieber1, C. Campo1,2, L. Bernard1, H. Boeglen2, S. Hengy1, J.-M. Paillot2
1 French-German research institute of Saint-Louis (ISL), Saint-Louis, France

2 Université de Poitiers, XLIM, UMR 7252, Poitiers, France

Abstract

Among other missions the French German research Institute of Saint-Louis (ISL) works on array
signal processing for secured communications between high speed projectiles and allied base stations.
Within that framework, a projectile tracking receiving station based on commercial Software-Defined
Radios (SDR) was developed using four channels to steer an antenna array and recombine the received
signals, hence improving the gain of the receiving station. A transmitter embedded in the projectile
sent data to the developed receiving station at a 2 Mbits/s. In order to decode and process in real
time the data received by the four channel antenna array, a high sampling rate was required. As this
highly resource consuming application resulted in sample overflows that is, in periodic losses of data
between the SDR and the computer, an optimization of our algorithms computed on GNU Radio and
the communication between our blocks proved to be necessary.

This paper intends to provide feedback on our optimization work. Some of the main problems we
encountered and the solutions we propose to solve them are briefly exposed and will be further detailed
in our oral presentation.

1 Introduction

Among other missions, the ISL works on develop-
ing secure communications between fired projectiles
and ground stations for future smart ammunitions.
Antenna arrays then offer many advantages such as
directional radiation patterns that can be dynam-
ically reconfigured to follow a moving transmitter,
fight against hostile jammers or listeners, etc. In
this context a SDR-based receiving station was de-
veloped using GNU Radio and the commercial Uni-
versal Software Radio Peripherals (USRPs) sold by
National Instruments, and proved to be able to elec-
tronically follow a transmitter by steering a four
element Uniform Linear Array (ULA), increasing
the gain on the received signal. However in order
to simultaneously decode the transmitted signal at
a 2 Mbits/s baud rate, the sampling rate for all
channels needed to be raised to 8 MSamples/s. To
compose with the SDR requirements it was neces-
sary for our laptop to receive data at a total rate of
33.33 MS/s (for all four channels), process the re-
ceived data with our implemented algorithms such
as beamforming and direction finding (DOA) that
were introduced in [1], and record the whole in real
time, resulting in a highly data consuming applica-
tion. Our first attempt to run this application with
a laptop equipped with an Intel i7 processor, 32
GB of RAM and a Samsung 850 evo SSD resulted
in data overflows, i.e. in periodic data losses due to
the lack of computation power, hence forcing us to
think carefully about computation efficiency when
implementing our application in GNU Radio.

Figure 1: Flowgraph runnable at 1MS/s but creat-
ing data overflows at 8.33MS/s.

Fig. 1 exhibits a flowgraph that managed to
perform projectile following at 1MS/s but created
data overflows when higher sampling rates were re-
quired. The important number of streams and use
of loops instead of vector oriented library kernels
(Volk) were partly responsible for these overflows.

This paper does not focus on our application and
results, but intends to present our work on code
optimization, especially to extend the computation
efficiency of our algorithms and flowgraphs devel-
oped in C++ in GNU Radio [2]. The remaining of
this abstract briefly covers suggested improvements
we have explored to avoid overflow issues.

1



2 Suggested improvements for
optimization

The first and most obvious question that arises is
the network throughput between the SDR and the
laptop, as well as the laptop capability to record all
the needed data fast enough. In the case of our ap-
plication, the total 33.33MS/s sampling rate forced
us to install a Thunderbolt 2 SANLink adapter. It
can also be useful to create a RAMDisk if the drive
is not capable to record fast enough. Reducing the
amount of written data will have a positive effect
on the bitrate: users should write binary files rather
than ASCII ones and use data types with smaller
memory size.

Once it is sure network throughput and data
recording speed are not the bottlenecks that cre-
ate data overflows, one can investigate his source
code to enhance his application efficiency. Due to
GNU Radio’s way of processing streams as buffers
of data, the work() method of a block is usually a
two-level loop that parses each sample of each input
stream. One should avoid multiple computations
of invariant values inside loops, but also try to use
optimized functions such as memcpy() or the Volk
library [3] kernels instead of these loops whenever
possible.

However even if correctly managing streams be-
tween blocks allows to spare resources, it remains
important to limit those streams when they are ex-
pendable. Although it might be tempting as a fast
implementation to simply add a stream to a block
as a trigger or a way to share a variable between
blocks, it is computationally expensive and can be
responsible for data overflows when high sampling
rates are required. In order to efficiently communi-
cate information between blocks, GNU Radio na-
tively offers the possibility to tag existing streams
with metadata. Since a tag is associated to a sam-
ple of a data buffer, we can consider tags as a syn-
chronous communication vector. For asynchronous
communication GNU Radio allows blocks to send
messages to other blocks. A message is a 1 to N
communcation carried out by the sender: the re-
ceiver message handler is called for each pending
message. As no native option is given for users
to develop blocks that can asynchronously use a
shared variable, we developed a new communica-
tion vector based on static variables that allow vari-
ables to be read and written by several blocks in
a thread-safe way assured by a mutex. Further
details on our proposed communication vector be-
tween blocks will be given in our presentation.

After information communication between blocks
has been verified enabling real time scheduling op-

tion will allow GNU Radio threads to have prior-
ity over concurrent threads. Finally blocks using
computationally heavy algorithms like DOA esti-
mation, etc, can be bound to a dedicated proces-
sor core while less demanding threads are bound
to a pool of remaining cores. It can be noted that
sometimes splitting such blocks into several ones
will take advantage of the multi-core environment.

Figure 2: Flowgraph runnable at 8.33MS/s.

Fig. 2 shows an optimized version of the previous
flowgraph that can be run on the same laptop at
8.33MS/s with a graphical view of the four received
signals.

3 Conclusion

This paper presents the main modifications we
brought to our developed blocks, making our ap-
plication runnable for four channels at a 8.33MS/s
sampling rate. An alternative communication vec-
tor between blocks that fits some of our particular
needs has been mentioned, and all the suggested
improvements presented above will be further de-
tailed in our oral presentation.

References

[1] C. Campo, L. Bernard, H. Boeglen, S. Hengy,
J.-M. Paillot, Software-Defined Radio system
for tracking application, EuCAP London 2018.

[2] GNU Radio 3.6.4.2 C++ API documen-
tation at https://www.gnuradio.org/doc/

doxygen-3.6.4/index.html

[3] Vector Optimized Library of Ker-
nels (Volk) doxygen documentation at
libvolk.org/doxygen/

2

https://www.gnuradio.org/doc/doxygen-3.6.4/index.html
https://www.gnuradio.org/doc/doxygen-3.6.4/index.html
libvolk.org/doxygen/

	Introduction
	Suggested improvements for optimization
	Conclusion

