
Hacking the DSMx Drone RC protocol

Cyrille Morin1, Leonardo S. Cardoso1
1 Univ Lyon, Inria, INSA Lyon, CITI, France

Abstract

We present a decoder for a proprietary drone radio-control protocol, DSMx, implemented in GNU-
Radio. This decoder is able to detect a transmission, decode transmitted data, find and follow the
corresponding frequency jump sequence and identify the emitter by its manufacturing ID.

1 Introduction

Unmanned Aerial Vehicles (UAVs) or drones have
been around fo decades for military and scientific
purposes. But they have become increasingly pop-
ular with the general public in the last 10 years.

Their widespread usage causes airspace sharing
issues. Existing regulations are tailored to big air-
crafts, not drones, and their use is either not prop-
erly regulated or not covered at all and the public
is often not aware of the legal issues with piloting
what is sold to be a toy.

This creates privacy and safety issues: It’s ex-
tremely simple to fly over private properties and
film unwilling third parties, or even fly by restricted
areas such as airports, military fields or nuclear
plants. Manned aircrafts are also at risk of colli-
sion, and some drug cartels are starting to use some
to deliver drugs to dealers.

Regulations enforcement is not simple due to the
drones’ size and stealthiness and, even if one is
caught, it does not help with locating the pilot that
can be more than a kilometre away.

Systems have been developed to physically cap-
ture drones with nets, to jam the radio transmis-
sion, or to simply destroy them. All these systems
require knowledge of the drone’s position and to be
close to it.

A study and implementation of the radio con-
trol protocols in use could allow for detection of
unwanted drones without line-of-sight and either
takeover or targeted jamming without blocking the
radio spectrum.

DSMx is a proprietary protocol from Spektrum
used by other drone manufacturers such as Hori-
zon Hobby. A couple of hobbyist groups such as
PaparazziUav[1] and Deviation, whose objective is
to create an universal transmitter implementing
protocols from the various drone manufacturers,
have it in their support list. The Deviation GitHub
repository has a very good description of it[2]. But
their approach uses the proprietary hardware with
a source code modification to implement other pro-
tocols and add different transmission chips for in-
creased compatibility.

Jonathan Andersson presented a system able to

detect and decode a transmission and emit signals
to hijack a drone in October 2016 at PacSec in
Tokyo [3]. GNURadio was used to study the pro-
tocol but the implementation was done on hard-
ware with the original radios. So, to the best of
our knowledge, there is no previous DSMx decoder
implemented with software defined radio

2 Protocol description

The DSMx protocol works on a CYRF6936 radio
chip that implements a frame based data trans-
mission with Frequency Hopping Spread Spec-
trum (FHSS) and Direct-Sequence Spread Spec-
trum (DSSS) based on a GFSK modulation scheme
at 1Mbit/s in the 2.4GHz ISM band. After a
preamble, a start-of-packet (SOP) code is sent in
a specific sequence to tell the hardware the DSSS
parameters of the communication. In normal oper-
ation, the DSSS step is done by sending variations
over two 64bits long pseudo-noise (PN) codes: one
bit corresponds to the PN code used, one tells if a
NOT operation was applied and six more describe
the number of bit-wise shifts of the code, so one
64bits chip codes for one byte.

Over this, the frame consists of the last two of
the four identification bytes defined in each radio
card, followed by 14 bytes coding for the values of
seven RC channels. If needed, frames can be sent
in pairs to handle up to 12 RC channels.

The PN codes used for data and SOP are selected
from a 5 by 9 matrix depending on the current radio
channel and the ID bytes.

A CRC is added at the end of each frame for
error detection. It uses the first two ID bytes as
seed. Unfortunately, the exact algorithm and/or
polynomial was not found.

The FHSS element is done by changing the ra-
dio channel after each frame in a jump sequence
of 23 different channels over 74 possibilities. We
won’t go into the details of the algorithm, but it is
a constrained pseudo-random generator with a seed
being the ID bytes.

There is also a pairing frame to configure the re-
ceiver to listen to one specific transmitter. It’s sent

1



Figure 1: GNURadio flowgraph for DSMx detection, decoding, and FHSS channel sequence following

on a random radio channel and contains data de-
scribing the transmittter capabilities (RC channel
number and protocol type) and, more importantly,
the four ID bytes used in the jump sequence and
the PN code selection.

3 Demo setup

This demonstration presents an implementation of
a DSMx decoder in GNURadio.

The USRP listens to one channel at a time at
2Msps. In the three following blocks, the quadra-
ture demod with the binary slicer handle the GFSK
demodulation and the Clock recovery does the syn-
chronisation. Then, we look for the preamble for
time synchronisation and use next three custom
blocks for: packet isolation and PN code discov-
ery, data decoding, and frequency jump following
and GUI output.

Figure 2: Gui output of the system with current
RC channel values and computed jump sequence

The codes used in each frame are based on the
value of the ID bytes, that we don’t know, but,
with the selection algorithm and the radio channel
number known, it becomes simple to search for the
SOP code in only seven possibilities, and with that
the PN codes can be extracted. So there is no need
to know anything about the transmitter to be able
to decode data.

If the algorithm was known, it would be possible
to search over the space of 2 bytes to extract the
two ID bytes that are not sent with each frame.
Those two bytes would allow for exact transmitter
identification and computation of the radio channel
jump sequence.

To get these, the pairing frame can be listened
to. This allows to demonstrate the capacity of the
USRP to follow the jump sequence over a known
transmitter.

4 Conclusion

In this demonstration, we present a GNURadio im-
plementation of a system able to decode DSMx
data from an unknown transmitter with a partial
identification of the transmitting radio chip. If the
transmitter is known, we can show that the SDR
hardware used is able to follow the protocol’s FHSS
jump sequence quickly enough and not lose frames.
Further progress on the system depends on the dis-
covery of the exact CRC algorithm: It would allow
full transmitter identification and jump sequence
computation for full data decoding, selective jam-
ming of the concerned channels or emission of cus-
tom frames.

The implementation code and flowgraph are
available on GitHub at https://github.com/

lscardoso/gr-dsmx-rc.

References

[1] Paparazzi. (2017) Paparazzi uav wiki. [Online].
Available: http://wiki.paparazziuav.org/wiki/
Main Page

[2] Deviation. (2017) Custom firmware for walkera
devo radios. [Online]. Available: https://
github.com/DeviationTX/deviation

[3] J. Andersson. (2016) Attacking dsmx spread
spectrum frequency hopping drone remote
control with sdr. [Online]. Available: https://
pacsec.jp/psj16/PSJ2016 Andersson Hacking
DSMx with SDR PacSec 2016 English.pdf

2

https://github.com/lscardoso/gr-dsmx-rc
https://github.com/lscardoso/gr-dsmx-rc
http://wiki.paparazziuav.org/wiki/Main_Page
http://wiki.paparazziuav.org/wiki/Main_Page
https://github.com/DeviationTX/deviation
https://github.com/DeviationTX/deviation
https://pacsec.jp/psj16/PSJ2016_Andersson_Hacking_DSMx_with_SDR_PacSec_2016_English.pdf
https://pacsec.jp/psj16/PSJ2016_Andersson_Hacking_DSMx_with_SDR_PacSec_2016_English.pdf
https://pacsec.jp/psj16/PSJ2016_Andersson_Hacking_DSMx_with_SDR_PacSec_2016_English.pdf

	Introduction
	Protocol description
	Demo setup
	Conclusion

